Criar um Site Grátis Fantástico
Les opportunistes streaming 4K

Les levures opportunistes émergentes

[Show abstract] [Hide abstract] ABSTRACT: Candida spp. are responsible for severe infections in immunocompromised patients and those undergoing invasive procedures. The accurate identification of Candida species is important because emerging species can be associated with various antifungal susceptibility spectra. Conventional methods have been developed to identify the most common pathogens, but have often failed to identify uncommon species. Several studies have reported the efficiency of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of clinically relevant Candida species. In this study, we evaluated two commercially available MALDI-TOF systems, Andromasâ„¢ and Bruker Biotyperâ„¢, for Candida identification in routine diagnosis. For this purpose, we investigated 1383 Candida isolates prospectively collected in eight hospital laboratories during routine practice. MALDI-TOF MS results were compared with those obtained using conventional phenotypic methods. Analysis of rDNA gene sequences with internal transcribed regions or D1-D2 regions is considered the reference standard for identification. Both MALDI-TOF MS systems could accurately identify 98.3% of the isolates at the species level (1359/1383 for Andromasâ„¢; 1360/1383 for Bruker Biotyperâ„¢) vs. 96.5% for conventional techniques. Furthermore, whereas conventional methods failed to identify rare or emerging species, these were correctly identified by MALDI-TOF MS. Both MALDI-TOF MS systems are accurate and cost-effective alternatives to conventional methods for mycological identification of clinically relevant Candida species and should improve the diagnosis of fungal infections as well as patient management.

Full-text · Article · Mar 2013

[Show abstract] [Hide abstract] ABSTRACT: The Prospective Antifungal Therapy Alliance (PATH Alliance®) performed prospective surveillance of invasive fungal infections (IFIs) among patients hospitalized at 25 medical centers in North America between 2004 and 2008, collecting information on the epidemiology, diagnosis, treatment, and mortality rates of IFIs. In total, 7526 IFIs were identified in 6845 patients. Candida spp. (73.4%) were the most common pathogens, followed by Aspergillus spp. (13.3%), and other yeasts (6.2%). Culture was the most frequently used diagnostic test in the majority of IFI categories. Most patients with invasive candidiasis were treated with fluconazole (48.3%) and the echinocandins (34.0%), while voriconazole (45.5%) was the main antifungal agent for invasive aspergillosis. The 12-week survival rate ranged from 37.5% for hematopoietic stem cell transplant recipients to

75.0% for those with HIV/AIDS. In summary, the findings of the PATH Alliance® registry provide a better understanding of the epidemiology of a vast variety and large numbers of IFIs.

Full-text · Article · Aug 2012

[Show abstract] [Hide abstract] ABSTRACT: Antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. In vitro susceptibility testing is often used to select agents with likely activity for a given infection, but perhaps its most important use is in identifying agents that will not work, i.e. to detect resistance. Standardized methods for reliable in vitro antifungal susceptibility testing are now available from the Clinical and Laboratory Standards Institute (CLSI) in the United States and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in Europe. Data gathered by these standardized tests are useful (in conjunction with other forms of data) for calculating clinical breakpoints and epidemiologic cutoff values (ECVs). Clinical breakpoints should be selected to optimize detection of non-wild-type (WT) strains of pathogens, and they should be species-specific and not divide WT distributions of important target species. ECVs are the most sensitive means of identifying strains with acquired resistance mechanisms. Various mechanisms can lead to acquired resistance of Candida species to azole drugs, the most common being induction of the efflux pumps encoded by the MDR or CDR genes, and acquisition of point mutations in the gene encoding for the target enzyme (ERG11). Acquired resistance of Candida species to echinocandins is typically mediated via acquisition of point mutations in the FKS genes encoding the major subunit of its target enzyme. Antifungal resistance is associated with elevated minimum inhibitory concentrations, poorer clinical outcomes, and breakthrough infections during antifungal treatment and prophylaxis. Candidemia due to Candida glabrata is becoming increasingly common, and C glabrata isolates are increasingly resistant to both azole and echinocandin antifungal agents. This situation requires continuing attention. Rates of azole-resistant Aspergillus fumigatus are currently low, but there are reports of emerging resistance, including multi-azole resistant isolates in parts of Europe.

Article · Jan 2012

Michael Pfaller

[Show abstract] [Hide abstract] ABSTRACT: A growing population of immunosuppressed patients has resulted in increasingly frequent diagnoses of invasive fungal infections, including those caused by unusual yeasts. The incidence of non-albicans species of Candida is increasing compared with that of Candida albicans, and several species, such as Candida glabrata and Candida krusei, may be resistant to azole antifungal therapy. Trichosporon species are the second most common cause of fungaemia in patients with haematological malignant disease and are characterised by resistance to amphotericin and echinocandins and poor prognosis. Rhodotorula species belong to the family Cryptococcaceae, and are a cause of catheter-related fungaemia, sepsis, and invasive disease in severely immunosuppressed patients. An increasing number of sporadic cases of invasive fungal infections by non-neoformans cryptococci have been reported in immunocompromised hosts, especially for patients with advanced HIV infection or cancer who are undergoing transplant. Other uncommon yeasts that can cause invasive disease in severely immunosuppressed patients include Geotrichum, Hansenula, Malassezia, and Saccharomyces. Host immune status is a crucial determinant of the type of invasive fungal infection a patient is at risk for. Diagnosis can be challenging and relies heavily on traditional cultures of blood and other sterile sites, although serum (1,3)-β-D-glucan testing might have an adjunctive role. Although rare yeasts are emerging as opportunistic human pathogens, diagnosis remains challenging and treatment suboptimal.

Full-text · Article · Feb 2011

Marisa H Miceli Jose A Diaz Samuel A Lee

[Show abstract] [Hide abstract] ABSTRACT: Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species.

Full-text · Article · May 2007

May 2014 · Réanimation

The incidence in the intensive care unit of invasive fungal infections, including invasive aspergillosis (IA) and candidiasis (IC), increased during these last decades. Outcome remains tightly linked to the delay of treatment administration. Routine microbiological techniques give too late results to allow prompt antifungal therapy. They are even sometimes unable to diagnose the infection. [Show full abstract]